
J. Fluid Mech. (2002), vol. 473, pp. 321–347. c© 2002 Cambridge University Press

DOI: 10.1017/S0022112002002483 Printed in the United Kingdom

321

On the capillary interaction between solid plates
forming menisci on the surface of a liquid

By T A H E R A. S A I F
Department of Mechanical and Industrial Engineering, University of Illinois,

1206 West Green Street, Urbana, IL 61801, USA

(Received 22 March 2001 and in revised form 10 July 2002)

A hydrophilic or a hydrophobic long rigid solid plate of finite width, forming a
meniscus with a liquid in a uniform gravitational field is considered. The one-
dimensional meniscus with prescribed heights of the triple point from the far-field
liquid surface is investigated analytically using the Young–Laplace equation. It is
found that for a hydrophilic plate, the vertical force necessary to break the meniscus
during removal of the plate from the liquid is larger than the force necessary to break
the meniscus during submersion of the plate into the liquid. Furthermore, the capillary
force on the plate reaches a maximum before the meniscus collapses during removal,
but no maximum exists before collapse during submersion. The reverse is true when
the plate is hydrophobic. The study is then extended to investigate the interaction
force between two plates, each forming a meniscus with the liquid. The elevations of
the plates from the far-field liquid surface are prescribed, in contrast to earlier studies
where interaction between long cylinders floating under self weight was considered.
Here, the menisci are determined exactly using the Young–Laplace equation. It is
shown that for prescribed plate elevations, there can be at most two possible pairs
of menisci between them. Each pair bifurcates from a meniscus that is determined by
the elevations of the plates and the gap between them. Furthermore, as known for
solids floating under self-weight, the horizontal component of the interaction force
is attractive for similar menisci (e.g. when the two plates are equally displaced in or
out of the liquid), and repulsive when they form opposite menisci. It is shown that
if the two menisci are of the same type, but not similar (e.g. one plate is pushed
more into the liquid than the other), then the force is attractive at long distances, and
may be repulsive at shorter distances with a stable equilibrium at a finite distance
between the plates, depending on the elevations of the plates. Such interaction can be
between two hydrophilic or two hydrophobic plates or between a hydrophilic and a
hydrophobic plate.

1. Introduction
The problem of the meniscus has intrigued scientists for the last two centuries,

beginning with Young (1805) and Laplace (1966, first published by Laplace in 1806)
who related the curvature of the meniscus to the pressure difference across it. Based
on this relation, the shape and stability of the meniscus and the force it exerts on
solids have been addressed by several authors (e.g. Poisson 1831). Recent relevant
works include those of White & Tallmadge (1965), Concus (1968), Hildebrand &
Tallmadge (1970), Padday (1971), Padday & Pitt (1972), Padday, Pitt & Pashley (1975)
and Padday et al. (1997). These works involve a common mathematical theme –
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solving the Young–Laplace equation expressed as a second-order nonlinear ODE,
some offering approximate solutions (see e.g. Padday et al. 1975 for a historical
account), and some offering solutions for specific assumed boundary conditions, e.g.
perfect wetting condition (White & Tallmadge 1965; Hildebrand & Tallmadge 1970).

A common physical theme involved in the works of several authors is that a
meniscus is formed by a liquid with a macroscopic (thick) hydrophilic solid, e.g. a
capillary rise (Concus 1968), a pendant drop from a solid surface (Majumdar &
Michael 1976), a liquid bridge between two solid surfaces or a solid surface and the
free liquid surface, and a sessile drop (Padday 1971). The edges of the solid formed by
the vertical and horizontal surfaces (the horizontal surface is in contact with liquid)
are assumed sharp and although the angle (say, with the vertical) of the meniscus at
the edge is allowed to change, the mechanism by which the liquid accommodates this
change maintaining thermodynamic equilibrium remains unclear.

The effect of the corner of a solid on liquid spreading is studied by Oliver, Huh &
Mason (1977) to verify Gibbs’ (Gibbs 1906) criterion on the angle of the meniscus
near the three-phase (air/liquid/solid) contact line at the edge of a solid. Here, the
corners of the axisymmetric solids were varied between 10◦ and 170◦. Following the
verification, it was argued that the edge may be considered to have a small finite
radius which allows the meniscus to change its angle with the vertical to maintain
global equilibrium, while maintaining a fixed local contact angle, a thermodynamic
parameter for the given solid/liquid/vapour system. Using this mechanism, i.e. the
contact angle is independent of the location of the contact line, Orr, Scriven &
Rivas (1975) investigated liquid bridges between two solids using the Young–Laplace
equation and showed that the usually expected attractive capillary force between the
solids can become repulsive when wetting is imperfect (sum of the contact angles
with the solids is greater than π).

An effect of surface tension, known from our everyday experience, is that small
floating bodies on liquid/air interfaces attract each other and form clusters. For
example, floating cereal flakes on a bowl of milk attract each other, small particles
such as ground pepper, glass particles or small pieces of aluminium foil strewn on
water attract each other to form clusters.

Bragg & Nye (1947) employed the interaction force between bubbles on a soap
solution to form two-dimensional crystals and demonstrated the formation of crystal
defects such as dislocations and grain boundaries. The bubble raft demonstration is
still popular in courses on dislocations. Motivated by the demonstration, Nicolson
(1949) used the linearized Young–Laplace equation to determine the interaction force
between two small (less than 3 mm in diameter) floating bubbles. The force was
attributed to the perturbed pressure field around one bubble owing to the presence of
the other. The surface tension of the liquid/vapour interface played no explicit role
in determining the interaction force. It was shown that the interaction force between
the bubbles is attractive until they touch each other. Further approach between their
centres generates repulsive force owing to the compression of the bubbles. Subsequent
refinement of the analysis included the effect of surface tension in determining the
interaction force. For example, the force between two long identical cylinders with
circular cross-sections, floating in equilibrium under self-weight, was evaluated by
Gifford & Scriven (1971), one of the two studies, to the best of our knowledge,
that treated the interaction problem between floating bodies without linearizing the
Young–Laplace equation. The other study, by Mansfield, Sepangi & Eastwood (1997),
investigated the interaction force between long plates, also floating in equilibrium
under self weight. The study accounted for the tilt of the plates as they approach
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each other. Furthermore, it investigated the phenomenon of floatation of small solid
bodies of arbitrary shape due to buoyancy and capillarity, as well as the interaction
force between them using the linearized Young–Laplace equation.

The relevance of the interaction between floating bodies to the processing of
colloidal materials has prompted a series of studies during the last decade. The major
goal of these studies was to investigate the interaction between two floating spheres
based on the linearized Young–Laplace equation. For example, Chan, Henry & White
(1981) showed that for floating spheres and circular cylinders, the error introduced
by linearization is small when the Bond number B = (ρB − ρA)gR2/γAB is sufficiently
small. Here, A and B are the two media forming the meniscus interface, ρ is the
density, R is the radius of the sphere or cylinder, and γAB is the surface energy
of the interface between A and B. The linearized result with small Bond number
for two long cylinders was compared with the exact solution obtained earlier by
Gifford & Scriven (1971), and close correspondence was observed. A linear analysis
on the interaction force between two floating cylinders by Allain & Cloitre (1988) also
showed close correspondence with the predictions by the exact analysis when the Bond
number is small. The study also provided the conditions necessary for the interaction
force to be attractive or repulsive. More recent studies include investigation of the
interaction force and energy between two submillimetre sized floating spheres, taking
into account the gravitational, wetting and surface energies, using a linearized Young–
Laplace equation (Paunov et al. 1993). The analysis allowed the spheres to be close to
each other as long as the slopes of the menisci are small. Good correspondence was
found between the forces predicted by Paunov et al. (1993) and Chan et al. (1981)
when applied to spheres far from each other. The interaction force between a floating
sphere and a vertical wall forming a meniscus was studied by Kralchevsky et al. (1994)
and Velev et al. (1994) for shallow menisci, theoretically and experimentally, and it
was shown that the force can be both attractive or repulsive, and there can be a stable
equilibrium at a finite separation between the wall and the sphere. The interaction
force between two spheres in a thin film of liquid supported by a spherical surface is
studied by Kralchevsky, Paunov & Nagayama (1995), where one of the motivations
was the understanding of the properties of biomembranes containing membrane
proteins. A comprehensive review of the interaction between floating bodies on the
interface of two fluids has been presented by Kralchevsky & Nagayama (2000).

There has been a growing interest in self-assembly of structures, e.g. monolayers
or complex systems from a large number of independent components. The interest
is motivated by increasing miniaturization and complexity of engineering systems,
and is inspired by the biological world where complex aggregates are formed by
molecular self-assembly (Terfort, Bowden & Whitesides 1997). Intriguing patterns
with rich structures have been obtained by spontaneous self-assembly of millimetre
sized particles such as rotating magnetic disks floating on a liquid subjected to
magnetic and hydrodynamic forces (Grzybowski, Stone & Whitesides 2000). Plates
of various shapes, made of PDMS (polydimethylsiloxane), floating on the interface
between two fluids were found to form stable aggregates. The plates were subjected to
interaction force due to surface tension of the interface. The pattern of the aggregates
was determined by the shape and size of the plates as well as by the patterned
hydrophobicity and hydrophilicity of their sides (Bowden et al. 1997, 1999; Choi,
Bowden & Whitesides 1999; Bowden et al. 2000, 2001a, b). These parameters in turn
influence the shape of the menisci between the plates and hence the interaction force.
Grzybowski et al. (2001) presented an analytical model (using the linearized Young–
Laplace equation) and finite element simulation of the shape of the meniscus and the
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interaction energy between two plates. Here, the meniscus was considered pinned at
the edge of a plate. Hence, the plate thickness did not play any role in the model
except in defining the height of the meniscus. However, the mechanism by which the
meniscus changes its angular orientation at the edge at various distances between the
plates was not described in the paper.

Recently, micromechanical systems have been widely employed for fluidic appli-
cations. They include micro-analytical devices (Warren et al. 1999; Manz et al. 1990),
micro-pumps (Temmel et al. 1996; Saif, Alaca & Sehitoglu 1999; Soerensen et al.
1999), fluid transport and mixing by micro-channels (Liu et al. 2000), liquid micro-
motors (Kim 1999), and even in micro-fabrication (Kladits & Bright 2000; Syms
1999), to name just a few. Micro-fabricated thin-film structures made of polyimide
and polysilicon have been self-assembled by floating them on water and employing
the interaction capillary force between them by Hosokawa, Shimoyama & Miura
(1996). There is an increasing trend of using micro-actuators to interface with liquids
for micromanipulation of objects such as biological species (Sager & Saif 1999; Saif
2000) where a meniscus may form between a solid and the liquid. Many fabrication
processes require micro-systems to interface with liquids and form menisci (Bustillo,
Howe & Muller 1998; Kuiper et al. 2000).

In contrast to earlier applications, micromechanical components forming menisci
are more likely to be thin plates with thickness of the order of a micrometre, and
with lateral dimensions in the range of a micrometre to hundreds of micrometres.
Such plates are less likely to be floating bodies, but they may form menisci with a
liquid as part of a micro-system. Thus, their elevations from far-field liquid surface
are prescribed. The menisci may have steep slopes and the components forming the
menisci may be close to each other. Thus, an analysis that involves linearization of
the Young–Laplace equation is not sufficient in determining the forces between solids
as well as between the solid and the liquid.

With the new applications in mind, this study investigates the force on a thin
solid plate forming a meniscus with a liquid, as well as the interaction force between
two plates forming menisci with shallow to steep slopes. The elevations of the plates
from the far-field liquid surface are prescribed. The study was motivated by a micro-
mechanical experiment shown in figure 1. It involves a thin rectangular plate, 100 µm
long, 20 µm wide, 4 µm thick, made of single crystal silicon and coated with a thin
layer of silicon dioxide (hydrophilic with water), attached to a calibrated spring (Sager
& Saif 1999). It is brought in contact with the surface of water and a meniscus is
formed. The plate is then moved vertically upward until the meniscus breaks. The
corresponding force of the meniscus on the plate is obtained from the deformation of
the spring and its spring constant. A similar experiment is carried out by pushing the
plate into water until the meniscus collapses. Here, a reverse meniscus is formed. It is
found that the force required to break the meniscus while pulling the plate above the
liquid is higher (12.6 µN) than that (9.6 µN) required to push it into the liquid. The
experiment is repeated several times with similar results. If the effect of the vertical
plate in determining the forces is ignored, which is reasonable since it occupies only
a small portion (3%) of the perimeter, then, at first look, the experimental result
appears paradoxical, since the hydrostatic pressure (ρgh) is symmetric with respect
to the height of the plate about the far-field liquid surface (acting downward when
the plate is above, and upward when it is below the far-field surface). Furthermore,
the angle of the meniscus with the horizontal is expected (and can be shown) to be
symmetric with respect to height as well. Thus, we can pose the question: what is
the source of asymmetry in the meniscus breaking forces, i.e. what is the mechanism
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Figure 1. (a) Diagram of a thin silicon plate, coated by a thin layer of native silicon dioxide
(hydrophilic), contacting the surface of water and forming a meniscus. The plate is moved up-
ward/downward by a stage and the force on it is measured by a calibrated spring until the meniscus
collapses. (b) Optical micrographs of the plate forming menisci with water.

that gives rise to the difference of forces to collapse the two menisci? To address this
question, we first explore a mechanism by which a thin rigid solid plate, hydrophilic
or hydrophobic, forms a meniscus with a liquid as it moves in (reverse meniscus) or
out (regular meniscus) of the liquid. The mechanism is similar to that treated earlier
(Gibbs 1906; Oliver et al. 1997), by which a liquid wets a corner of a macroscopic
solid. Based on this mechanism, the shape of the meniscus and the force that the
meniscus applies on the plate for a prescribed admissible displacement of the plate in
or out of the liquid surface are obtained from the Young–Laplace relation retaining
its nonlinearity.

Next, the interaction force between two neighbouring plates forming menisci with
the liquid is investigated. The meniscus between the solids is solved exactly from the
Young–Laplace equation, retaining its nonlinearity which allows us to evaluate the in-
teraction force for any gap between the solids, and any admissible heights of the solids
above or below the liquid surface. Thus, the analysis captures all possible slopes, shal-
low to steep, of the meniscus. Note that the study differs from that by Gifford &
Scriven (1971) or by Mansfield et al. (1997) where the heights of the floating cylinders
or plates are determined by their weights. In contrast, here the heights are prescribed.
The nonlinear governing equation reveals that there exist bifurcation branches of the
solution for the meniscus for prescribed heights of the solids. A physical description
is provided for the bifurcation solutions, and the bifurcation points are identified.
It is shown that the interaction force between the solids may be attractive at long
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distances and repulsive at short distances with a stable equilibrium in between. Such
force interaction may be between two hydrophilic or two hydrophobic solids or be-
tween a hydrophilic and a hydrophobic solid. Finally, simple desktop experiments are
carried out to verify the mathematical predictions. However, first, we outline the basic
assumptions adopted in this paper.

2. Assumptions
Let γs, γsl and γ be the interface energies between a solid and a vapour, the solid

and a liquid, and the liquid and the vapour respectively, and the three media meet
along a line,L. Macroscopically, i.e. outside a core region of radius rc (rc < 100 Å for
most practical purposes (de Gennes 1985)) around L, the liquid meets the solid at
a fixed contact angle φ and the surface energies are fixed at a static thermodynamic
equilibrium condition. They are related by

γsl − γs + γ cosφ = 0, (2.1)

which holds irrespective of the local details of the core region and the curvature of
the triple line as long as the radius of curvature is larger than rc (de Gennes 1985).
Within the core region, contact angle and the surface energies can vary.

A pressure differential, ∆p, on the two sides of the liquid–vapour interface is related
to the principal radii R1 and R2 of the interface by

γ

(
1

R1

+
1

R2

)
= ∆p, (2.2)

which is known as the Young–Laplace equation (Young 1805; Laplace 1966, first
published by Laplace in 1806) and is valid as long as R1, R2 � rc (de Gennes 1985).

The paper is based on the assumptions that:
(i) All relevant radii, such as the radii of curvature of the surface of the solid plate,

and of the triple line L are much larger than rc.
(ii) All interfaces are smooth and the local asperities are ignored. Similarly, no

local pinning point occurs as the line L advances along a solid surface.
(iii) The solid plates are long normal to the paper, but they have a finite width.

The heights of the meniscus at all points along its length are equal. Thus, the problem
is one-dimensional and the meniscus has only one non-zero principal curvature.

3. A long thin solid plate interfacing with a fluid
Consider a long thin rigid strip of a hydrophilic solid (φ < 1

2
π) on the surface of a

liquid. Its cross-section at the edge is shown in figure 2(a). For illustration, the plate is
assumed symmetric about its vertical axis, and its edge is represented by a semicircle.
The outward normal at any point of the boundary is n̄.

When brought into contact with the liquid surface, the liquid spreads over the
entire bottom of the plate and forms a meniscus. That such a spreading cannot be
partial, at least for a circular disk, is shown mathematically by Vogel (1982). If the
plate is moved upward, away from the liquid surface, the meniscus takes a form such
as shown by m1 which forms an angle θ0 with the vertical (positive downward) at
L. The vertical component of the capillary force on the plate, contributed from its
two edges, is 2γ cos θ0 per unit length of the plate. The force acts downwards. The
height of L from the far-field liquid surface is H0. As the plate is moved towards the
liquid, L moves upward along the edge of the plate. The corresponding normal, n̄, at
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Figure 2. (a) A family of menisci formed between a hydrophilic solid plate and a liquid is shown
for different prescribed heights of the plate. The contact angle φ between the tangent to the solid
surface and the menisci is constant, but the angle, θ0, of the meniscus with the vertical at the
triple point, L, changes as L moves from the bottom surface of the plate towards the top with
the displacement of the plate towards the liquid. The local normal, n̄, to the plate surface rotates
from vertical down to vertical up. Among all the members of the family, m2 offers the maximum
capillary force γ (per unit length of triple line) vertically downward. When the plate is lowered into
the liquid, m5 is the highest possible meniscus attainable prior to collapse that offers an upward
vertical force γ sinφ, a fraction of γ. (b) Similar menisci for a hydrophobic solid. (c) The coordinate
system used to define the meniscus. All the profiles of the meniscus shown in (a)–(c) are computed
based on the procedure outlined in § 3.4.

L rotates counterclockwise, but the contact angle remains constant. Such a meniscus
is shown by m2 where θ0 = 0, and the vertical component of the capillary force is
maximum, 2γ, acting downwards. With further downward displacement of the plate,
L gradually moves upward, and θ0 continues to increase.

For the meniscus m3, θ0 = 1
2
π, H0 = 0, and the vertical component of the capillary

force on the plate vanishes. The meniscus m4 corresponds to θ0 >
1
2
π, and H0 < 0.

We refer to the menisci with θ0 >
1
2
π as the reverse menisci in contrast to the regular

menisci where θ0 6
1
2
π. Here, the capillary force offers a vertical component, |2γ cos θ0|,

acting upward per unit length of the plate, which together with the buoyancy force,
allows a plate, hydrophilic or hydrophobic, heavier than liquid to float. When n̄
becomes vertical, the meniscus forms an angle φ with the horizontal (meniscus m5,
compare with figure 1b) when θ0 = 1

2
π + φ, the maximum value that θ0 can attain

if there is no hysteresis (Carey 1992) in the contact angle. Meniscus m5 offers the
highest possible vertical component of the capillary force acting upward, allowed
by the contact angle φ and the cross-sectional geometry (horizontal on top) of the
plate. Since this upward vertical component, |2γ cos θ0| < 2γ, the downward vertical
component for the meniscus m2, and, as will be shown later, the hydrostatic head
at the triple point, L, of m2 are larger than those of m5, then the upward force
required to break the regular meniscus is larger than the downward force required
to break a reverse meniscus for the hydrophilic plate. This explains the source of
asymmetry found in the experiment, and is contributed by the hydrophilicity (φ < 90◦)
of the surface of the experimental plate and its geometric constraint (horizontal top).
Symmetry would be retained if φ = 90◦.
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As the plate is moved up (away from the far-field liquid surface), the menisci go
through m2 when the downward vertical force due to capillarity maximizes, and then
decreases with further elevation of the plate until the meniscus m1 is reached prior
to collapse. No such maximum is achieved prior to collapse for the reverse meniscus
when the plate is moved downward towards the liquid. Note that the total vertical
force due to capillarity and buoyancy may not reach a maximum prior to collapse
of the meniscus during the removal of the plate. However, if the width of the plate
is small, then the buoyancy force is small compared to the capillary force and the
maximum will be reached at a meniscus close to m2. Such is the case for the small
experimental plate, shown in figure 1. If there is hysteresis in the contact angle,
then for a hydrophilic plate, the maximum downward capillary force will still be 2γ.
However, if φa > φ is the apparent contact angle for an advancing triple line (Carey
1992), then the maximum upward capillary force prior to submersion is 2γ sinφa, if
φa <

1
2
π, or 2γ if φa >

1
2
π. In the latter case, symmetry in the meniscus breaking forces

will be restored. Thus, in the absence of hysteresis, φ < 1
2
π and geometric constraint

(horizontal top) give rise to asymmetry. The presence of hysteresis can only reduce the
asymmetry (reduce the difference in the meniscus breaking forces), but cannot alone
explain the asymmetry. In the rest of the paper, contact angle hysteresis is assumed
negligible.

The sequence of menisci for a hydrophobic plate (φ > 1
2
π) for its various heights

is shown in figure 2(b). Here, no meniscus is formed when the plate is moved away
from the liquid surface.

In order to estimate the force prior to collapse in the experiment of figure 1, we
estimate from the micrographs the average angle of the meniscus at the triple points
with the vertical as θ0 = 24◦ and 130◦ corresponding to removal and submersion.
Then, with γ = 0.072 J m−2 for water, and with a perimeter of 240 µm, the forces
for removal and submersion are found to be 15.8 µN and 11.1 µN, respectively. The
corresponding experimental values are 12.6 µN and 9.6 µN, respectively. Note that
one-dimensional meniscus theory presented in this paper cannot be readily applied
to the small-plate experiment where the meniscus has both non-zero curvatures.

3.1. Condition for flotation

It is well known that buoyancy and the vertical component of the capillary force
allow small solids to float on liquids. The condition for floatation of a long plate with
thickness t, width 2W and density ρs can be readily written as

γ sinφ+WρlgH0 >Wtg(ρs − ρl), (3.1)

where ρl is the density of the liquid and H0 is the depth of the triple line (i.e. the top
surface of the plate). For a circular plate with radius r, the condition for floatation
becomes

2πγ sin α0 + πrρlgH0 > πrtg(ρs − ρl), (3.2)

where α0 is the maximum possible angle that the meniscus can make with the
horizontal when the locus of the triple line is a circle (instead of a straight line in
the case of a long plate), and H0 is the corresponding depth of the triple point.
Thus, however large the quantity g(ρs − ρl) may be, for a given upper bound of the
left-hand sides of (3.1) and (3.2), we can always find a small enough Wt or rt so that
the condition for flotation is satisfied. In other words, a small enough solid plate,
hydrophilic or hydrophobic, no matter how dense it is, can float in any gravitational
field, as long as the radius of curvature of the solid surface is larger than rc, the radius
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of the core region of the triple point. It is, however, worth noting that circular thin
plates are difficult to fabricate when micro mechanical systems are formed by deep
etching (such as deep silicon etching) or by filling a mould.

A mathematical model is provided next.

3.2. Mathematical modelling

We start by setting up the coordinates shown in figure 2(c). The triple point, L,
is the origin, Y denotes the vertical axis (positive downward), S is the coordinate
along the liquid–vapour interface, θ(S) is the angle that the tangent to the interface
makes with the vertical at S . For the one-dimensional meniscus, the Young–Laplace
equation (equation (2.2)) can be represented as

dθ

ds
= h0 − y with θ(s = 0) = θ0, (3.3)

which has been non-dimensionalized by the capillary length l0 =
√
γ/ρg. Here, in

reference to (2.2), 1/R1 = dθ/dS , 1/R2 = 0, ∆p = ρg(H0−Y ), the hydrostatic pressure
assuming that the atmospheric pressure does not change with the small height of the
meniscus, ρ is the density of the liquid, and S = sl0, H0 = l0h0 and Y = l0y. Note that
the small letters, such as s, h and y, denote lengths non-dimensionalized by l0. For a
given h0, θ0 must be such that the meniscus at the far field becomes horizontal, i.e. as
s→∞, then dθ/ds → 0, and θ → 1

2
π. In order to solve (3.3), we take the derivative

of both sides with respect to s, multiply by dθ/ds, and integrate with respect to s to
obtain

1
2
θ′2 + sin θ = 1

2
h2

0 + sin θ0 = 1 (3.4)

where we use dy/ds = cosθ, θ′(s = 0) = h0, and θ′(θ = 1
2
π) = 0. Here, ′ denotes deriva-

tive with respect to s. Equation (3.4) gives the relation between h0 and θ0:

h0 = ±√2
√

1− sin θ0 = 2 sin β0, (3.5)

where β0 = 1
4
π − 1

2
θ0. h0 is positive when − 3

2
π 6 θ0 6

1
2
π or 0 6 β0 6 π, and h0 is

negative when 1
2
π 6 θ0 6

5
2
π or −π 6 β0 6 0, i.e. the sign of sin β0 is similar to that

of h0, which is the reason for introducing the angle β0. Equation (3.5) implies that
h0 = H0/l0 can vary between −2 and +2 for all solids (hydrophilic and hydrophobic)
and liquids under any gravity. For a given φ, the geometry of the edge determines the
possible range of θ0 and hence h0. For the flat plate of figure 2(a, b), θ0 can vary from
−( 1

2
π − φ) to ( 1

2
π + φ). If the edge is circular then the range increases, although the

contact angle (φ) remains the same. Thus, a hydrophilic or a hydrophobic solid can
be designed to contact a liquid surface and move into the liquid without submerging
itself, which offers micro actuators considerable flexibility for manipulating objects
in liquids with a probe. For example, a thin plate attached to an actuator in air can
form the meniscus preventing the liquid from wetting the actuator, whereas the probe
attached to the plate may be inundated (figure 3).

3.3. Uniqueness of the solution for the meniscus

Proposition. For a prescribed admissible height, h0, of the triple point, there may be
only two possible menisci.

Proof. Let the prescribed non-dimensional height of the triple point L be h0 > 0
(i.e. only the positive solution in (3.5) is considered). Then θ0 <

1
2
π. Now, if − 1

2
π 6
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Figure 3. (a) A thin solid plate attached to a hydrophilic actuator forms a meniscus with a liquid
when it is pushed into the liquid. The plate allows a probe to interact with a specimen in the liquid
while keeping the hydrophilic actuator dry. (b) The plate boundary can be designed to increase the
allowable range of the displacement of the probe into the liquid.
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Figure 4. Two possible menisci between a solid and a liquid for a prescribed height of the triple
point. Here, h0 > 0, and the initial angle of the meniscus with the vertical is θ0 and −π− θ0, both
satisfying (3.5). The two menisci merge when θ0 = − 1

2
π, i.e. h0 = 2. The bent plates are introduced

to illustrate the multiplicity of menisci for a given height of the triple point. The profiles of the
menisci are computed based on the procedure outlined in § 3.4.

θ01 <
1
2
π satisfies (3.5) then so does θ02 = −π− θ01 (figure 4). Thus, the menisci, m01

or m02, starting with θ0 = θ01 or θ0 = θ02 increase θ from θ0 to 1
2
π with increasing s.

There are other angles < − 3
2
π, such as θ03 = −2π + θ01 that also satisfy (3.5), but a

meniscus starting with θ0 = θ03 increases θ to θ = − 3
2
π as s → ∞ which results in a

meniscus m03 identical to m01. Similarly, the meniscus with θ0 = −2π− θ01 coincides
with m02. Thus, for a given h0 there are two distinct menisci. They merge into one
when θ0 = − 1

2
π or h0 = 2 by (3.5), and we can view the two menisci as the two

bifurcation branches with θ0 = − 1
2
π as the bifurcation point. Similarly, when h0 < 0,

there may be at most two possible menisci.

3.4. Profile of the meniscus

The meniscus profile in (s, θ) coordinates is obtained from (3.4) with β = 1
4
π− 1

2
θ:

θ′2 = 2(1− sin θ) = 4 sin2 β or θ′ = 2 sin β, (3.6)

where only the positive sign is retained for θ′, since when − 3
2
π 6 θ 6 1

2
π i.e. 0 6 β 6 π,

and sin β > 0, then the height of the meniscus h = h0− y > 0 (follows from (3.5)) and
by (3.3), θ′ > 0. Similarly, when 1

2
π 6 θ 6 5

2
π i.e. −π 6 β 6 0, then θ′ 6 0. Thus, the

signs of θ′ and sin β are similar. Carrying out the integration with the limits (θ0, θ)
and (0, s), the relation between s and θ is obtained:

θ = 1
2
π− 4 tan−1[e−s tan( 1

2
β0)]. (3.7)
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The x and y coordinates of the meniscus can be obtained in parametric form from
dx = sin θds and dy = cos θds with θ or s as parameters:

x = ln

[
tan( 1

2
β0)

tan( 1
2
β)

]
+ 2(cos β0 − cos β), y = 2(sin β0 − sin β), (3.8)

which verify the limits: θ = 1
2
π, θ′ = 0, y = h0 and x → ∞ when s → ∞. If θ0 < 0

or θ0 > π, then the meniscus necks or narrows as s increases from the triple point.
The width of the meniscus is minimum at θ = 0 or θ = π. The vertical force on the
plate is given by the capillary component 2γ cos θ0 plus the buoyancy force that can
be obtained from the geometry of the plate and H0.

Note that the profile of the one-dimensional meniscus formed between a vertical
plate partially submerged in a liquid is solved exactly in Cartesian coordinates in text
books. e.g. (Batchelor 1967; Carey 1992) where θ0, the angle with the vertical, is the
contact angle, φ, and H0 is the capillary rise at the plate surface. Thus, θ0, and hence
H0, are fixed for a given combination of liquid, solid and vapour, and a gravitational
field. In contrast, (3.8) represents the meniscus formed by a horizontal plate, where
θ0, the angle with the vertical, is arbitrary. It depends on the prescribed height of the
triple point which is determined by the prescribed height of the plate.

3.5. An analogy with elastica

Consider a semi-infinite slender cantilever beam supported at one end, A, with an
angle θ0 with the vertical. A horizontal force P is applied on the beam far from A.
The beam bends, and far away from A its tangent becomes horizontal where the
height of the beam is H0 below the support. The equation governing the deformation
of the elastica is given by the moment curvature relation (Popov 1976):

dθ

dS
=

P

EI
(H0 − Y ), θ(S = 0) = θ0, (3.9)

which is identical to the equation governing the meniscus. They both take the same
non-dimensional form (equation (3.3)) dθ/ds = (h − y), θ(s = 0) = θ0, the former

being non-dimensionalized by l0 =
√
EI/P and the latter by the capillary length

l0 =
√
γ/ρg. Thus, in the non-dimensional space, the profiles of the meniscus and

that of the elastica are identical (see also Maxwell 1878) when they have the same
initial condition θ(s = 0) = θ0.

4. Interaction between thin plates forming menisci
In the rest of the paper, the interaction force between two thin solid plates on

the surface of a liquid is considered. The heights of the solids (above or below
the far-field liquid surface) are prescribed, i.e. an external agent holds the plates at
prescribed heights forming a regular or reverse meniscus. The question of interest
here is the interaction force between the plates along the horizontal direction for
different horizontal gaps between them.

Figure 5 shows various menisci formed between two solids and a liquid. Such
menisci can be grouped into two mutually exclusive (will be shown later) families,
one in which the meniscus between the two solids has a point that is at the level
of the far-field liquid surface. At this point, the curvature of the meniscus vanishes,
dθ/ds = 0 (figure 5a, b). The other family consists of menisci that contain a point
with height h0 = H0/l0 where the tangent to the meniscus becomes horizontal and



332 T. A. Saif

(a) (b)

(c) –h0

Hydrophilic
surface

s

õ

õ =   π1
2

h0

= 0
dõ
ds

Hydrophobic
surface

= 0
dõ
ds

(d ) (e) ( f )

h0h0

Figure 5. A variety of one-dimensional menisci formed between two solids, hydrophilic or hy-
drophobic. They are categorized into two families: one in which there is a point on the meniscus
where the height of the liquid coincides with that of the far field and hence the curvature (dθ/ds)
vanishes (a and b), the other has a point where the tangent to the meniscus (or its extrapolation)
becomes horizontal (c–f ). All distances are non-dimensionalized by the capillary length l0.

liquid is below this point (figure 5c–f ). If the point is between the two solids, then
it is either above or below the far-field liquid surface, i.e. |h0| > 0. h0 = 0 would
imply that the two solids are infinitely far apart from one another and hence there
is no interaction between them. The point where the tangent is horizontal may not
physically exist between the two solids, but may be obtained by an extrapolation of
the meniscus between the solids, as shown in figure 5( f ).

4.1. Meniscus between the two solids with dθ/ds = 0

Figure 6(a) shows a meniscus between two solids in a space non-dimensionalized by
l0 =

√
γ/ρg and is defined by the (s, θ) coordinate system. At s = 0, ∆p = 0 and

dθ/ds = 0. Let θ(s = 0) = θ0. The horizontal (positive towards right) and the vertical
(positive downward) distances from s = 0 are denoted by x and y, respectively. The
meniscus satisfies equation (3.3)

dθ

ds
= −y, θ(s = 0) = θ0, (4.1)

where − 1
2
π 6 θ0 6

1
2
π is yet to be determined from the prescribed heights, h1 and h2,

of the triple points and hence of the plates if they are thin, and the gap, x0, between
them. For a given θ0, the meniscus is completely defined, and the two solids can be
placed at any pair of points on it as long as the solids provide a surface that allows
us to preserve the solid–liquid contact angle, φ, shown in figure 6(a). Here, a possible
location of the left solid is shown by dotted lines. The solution of (4.1) is symmetric
with respect to y = 0 and can be obtained by treating the problem such that if both
the solids are below the far-field liquid surface (y > 0) at s = s1 and s = s2, s1, s2 > 0.
Differentiating both sides of (4.1) with respect to s, multiplying by θ′, and integrating
with respect to s in (0, s) we obtain

θ′ = −√2(sin θ0 − sin θ), (4.2)

where θ′(s = 0) = 0, θ(s = 0) = θ0 are used. The negative root is retained since when
y > 0, θ′ < 0 (equation (4.1)). Equations (4.1) and (4.2) give the relation between the
height of the meniscus h = y and the corresponding θ, i.e.

h =
√

2(sin θ0 − sin θ), hi =
√

2(sin θ0 − sin θi), (4.3)
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Figure 6. (a) A meniscus between two thin solid plates, one above and the other below the far-field
liquid surface. The meniscus has a point where the curvature vanishes, dθ/ds = 0. The coordinate
system is shown. The image of the triple point L1 (point 1, above the far-field liquid surface) is
shown by a shaded circle 1 below the far-field liquid surface. (b) A meniscus between two solid
plates above the far-field liquid surface. For given heights h1 and h2 of the solids, two menisci,
L1L2 or L′1L2 are shown. L1L2 or an extrapolation of L′1L2 has a point where the tangent
becomes horizontal. The origin of the coordinate system is chosen at this point. dθ/ds 6= 0 inL1L2

or L′1L2. All distances are non-dimensionalized by the capillary length l0.

where θ = θi at Li. The horizontal distance, x0 = x1 + x2, between L1 and L2 is

x0 =

∫ s(θ1)

0

sin θds+

∫ s(θ2)

0

sin θds =

∫ θ1

θ0

sin θ
dθ

θ′
+

∫ θ2

θ0

sin θ
dθ

θ′
, (4.4)

where θ′(θ0, θ) is given by (4.2). Since by (4.3), θi = θi(hi, θ0), then (4.4) contains the
only unknown θ0, for given h1, h2 and x0, thus providing the necessary condition to
solve for θ0. Once θ0 is obtained, the meniscus L1L2 can be defined as θ = θ(s) by
integrating (4.2): ∫ θ

θ0

dθ

−√2(sin θ0 − sin θ)
= s. (4.5)

The left-hand side is an elliptic integral of first kind, hence the integration must be
carried out numerically. θi, i = 1, 2, can then be obtained from (4.3) using θ0 and hi,
i = 1, 2.

Bounds on hi

From (4.3), |hi| 6 2. hi = 2 when θ0 = 1
2
π and θi = − 1

2
π. For a given θ0, the

maximum value that hi can attain is determined by 1
2
h2
i = 1 + sin θ0.
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Figure 7. (a, b) Computed (§ 4.1) menisci between two plates, one above and one below the far-field
liquid surface by 0.6 are shown for two different non-dimensional gaps, x0, between the plates. The
outer menisci are computed based on the procedure outlined in § 3.4. The horizontal force (per unit
length of the plates normal to the paper) on each plate owing to the proximity of the other is shown
in (c). The forces are equal and opposite. The interaction force is repulsive between the plates at all

distances. Here, the spatial dimensions are normalized by the capillary length l0 =
√
γ/ρg. Thus,

the actual distance between the plates = x0l0.

4.2. Interaction force between the plates

The horizontal force, Fx, per unit length of each plate (normal to the paper) in figure 6
is given by

Fx = γ(sin θ1 − sin θL). (4.6)

Here, θL is determined from (3.5) where θ0 is replaced by θL. θ1 is determined by the
procedure outlined in § 4.1. When the plates are far apart, θL = θ1 by symmetry, and
Fx = 0. As the plates approach each other, the symmetry is lost, and the interaction
force appears.

Figure 7 shows the menisci (computed) formed by two thin plates with h1 = −0.6
and h2 = 0.6, and their interaction force, Fx/γ, for various gaps, x0, between them.
Here the left-hand and right-hand solids are subjected to equal forces towards the left
and right, respectively, i.e. the interaction force is repulsive. The equal and opposite
forces satisfy system equilibrium, a condition which was not explicitly enforced in
deriving the meniscus, and thus provides an independent check of the evaluation of
the meniscus. It is important to note that since the derivation of the meniscus does
not involve linearization of the Young–Laplace equation (equation (2.2)), hence the
meniscus slopes can be large.

The physical mechanism by which the repulsive force appears can be seen as follows.
As the plates approach each other, the tangents to the meniscus atL1 andL2 incline
towards the vertical direction. Thus, the horizontal component of the capillary force
on the plates atL1 andL2 decreases. However, the menisci on the outer edges of the
plates remain unchanged, i.e. the horizontal component of the surface tension remain
unchanged. Consequently, the plates are subjected to horizontal forces away from
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each other, i.e. they repel each other. Thus, solids forming opposite menisci repel each
other.

4.3. Meniscus between the two solids with dθ/ds 6= 0

Figure 6(b) shows a possible meniscus, L1L2 between two thin solids with non-
dimensional heights h1 and h2 from the far-field liquid surface. Two possible locations
of the solid on the left-hand side are shown with triple points L1 and L′1, both with
height h1. The hydrostatic head does not vanish in L1L2 or L′1L2. The tangent to
the meniscus becomes horizontal, i.e. θ = 1

2
π at a point onL1L2 or at a point on the

curve extrapolated from L′1L2. We choose the origin s = 0 at the point where
the tangent is horizontal. Let the height of the meniscus at s = 0 be h0 in non-
dimensionalized units. The gap between L1 and L2 is x0. The horizontal distance
from s = 0 is given by x, and the vertical distance by y. Note that when h0 > 0, the
point s = 0 is elevated above the far-field liquid surface, and θ′ = dθ/ds > 0 for all s
in L1L2. Thus, h1, h2 > h0. The entire meniscus is then elevated above the far-field
liquid level, and s = 0 is the lowest point. Similarly, when h0 < 0, L1L2 is depressed
below the far-field liquid surface with s = 0 as the highest point. Thus, for either case
(h0 > 0 or h0 < 0), h0 and the corresponding hi are of the same sign and |hi| > |h0|.
Also, |θ′| > 0 at all points of L1L2, and the signs of θ′ and h0 are similar.

The governing equation for the meniscus (figure 6b) is

dθ

ds
= h0 − y, θ(s = 0) = 1

2
π, (4.7)

For given h0, the meniscus is completely defined. However, h0 is as yet unknown and
can be obtained from the prescribed x0 between L1 and L2. Differentiating both
sides of (4.7) with respect to s, multiplying by θ′, and integrating with respect to s in
(0, s) we obtain

θ′ = h0

√
1 +

2

h2
0

(1− sin θ), (4.8)

where θ(s = 0) = 1
2
π and θ′(s = 0) = h0 by (4.7) are used. Here, only the positive sign

of the square root is retained since the sign of θ′ and h0 are similar. From (4.7), at
Li, i = 1, 2,

θ′(at Li) = h0 − y = hi, (4.9)

which together with (4.8) gives the relation between hi and θi:

hi = h0

√
1 +

2

h2
0

(1− sin θi). (4.10)

The horizontal gap, x0, between L1 and L2 can then be represented as a function of
h0 as follows:

x0 =

∫ θ2

π/2

sin θds+

∫ π/2

θ1

sin θds =

∫ θ2

π/2

sin θ
dθ

θ′
+

∫ π/2

θ1

sin θ
dθ

θ′
, (4.11)

where θ′(θ, h0) and θi(hi, h0) are given by (4.8) and (4.10) respectively. Thus, h0 can be
solved numerically from (4.11) for given hi and x0. θi, i = 1, 2, then follow from (4.10)
and the profile of the meniscus L1L2 ((s, θ) coordinates) can be obtained from (4.8)



336 T. A. Saif

(a)

ç

ç

Attractive
interactive force, Fx

1.0 1.0
ç

x0

(b)

(c)

1 2 3 4

0.5

x0

Fx
γ

5 6 7

0.4

0.3

0.2

0.1

ç

2.00 rad
õ = 2.62 rad

õ = 2.62 rad

Fx

õ = 2.60 rad

Figure 8. Interaction between two thin solid plates, both pushed into the liquid by normalized

height h = −1. Actual height = l0h, where l0 is the capillary length =
√
γ/ρg. The menisci formed

by the solids at two different non-dimensional gaps, x0, between the solids are shown in (a) and
(b). They are computed based on the procedures outlined in §§ 3.4 and 4.3. The interaction force
is shown in (c). The force is attractive at all distances, since the direction of the capillary force, γ,
between the two plates aligns along the horizontal direction as the plates approach each other.

by a numerical integration:∫ θ

π/2

dθ

h0

√
1 + (2/h2

0)(1− sin θ)
= s. (4.12)

The interaction force is given by (4.6).
Figures 8(a) and 8(b) show the menisci between two thin plates, both with h1, h2 =

−1, as they approach each other. The interaction force (figure 8c) is attractive
for all distances between the plates. As the distance between the plates decreases,
the meniscus between them aligns more with the horizontal. Thus, the horizontal
component of the capillary force at L1 and L2 increases compared to the horizontal
components of the outer menisci. The attractive interaction force thus increases as
they approach.

Figures 9(a)–9(c) show the menisci between two solids as they approach each
other with h1 = −0.5 and h2 = −1. Figure 9(d ) shows the interaction force. At
large distances, θ1 and θL for the solid on the left-hand side are equal, and the
horizontal force vanishes. As the solids approach each other, θ1 decreases and the
horizontal force to the right increases. At state A, θ1 = 1

2
π where the force towards

right is maximum, γ(sin( 1
2
π)− sin θL). With further approach, θ1 continues to decrease

resulting in a decrease of force to the right. At state B, θ1 = π − θL and the force
vanishes (sin θL − sin(π− θL) = 0). During this approach, θ2 decreases from θR , goes
through a minimum at state A and returns to θ2 = θR at state B. With further
approach, θ1 decreases below θ1 = π− θL and θ2 increases beyond θR , when the force
becomes repulsive. Thus, the interaction force is attractive at long distances, repulsive
at short distances, and has a stable equilibrium at a finite distance between the two
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Figure 9. Interaction between two thin solid plates, pushed into the liquid by normalized heights

h = −0.5, and −1. Actual height = l0h where l0 is the capillary length =
√
γ/ρg. The menisci at three

different gaps, x0, between the solids are shown in (a)–(c). The profiles of the two outer menisci
are computed by the method described in § 3.4 and the meniscus between the two solids by that
described in § 4.3. The interaction force, shown in (d ), is attractive at long distances, repulsive at short
distances with a stable equilibrium in between. The force is maximum at state A, and it vanishes at
state B. The normalized energy, E/E0, where E0 = l0γ, due to the hydrostatic head and the surface
energy of the meniscus, as a function of x0 is shown in (e). Here, the non-dimensional widths of the
plates is 2. A numerical derivative of E/E0 with respect to x0 using a linear interpolation between
the energy values is calculated. The derivative coincides with the force plot.

solids. The nature of the interaction force depends on the relative magnitudes of h1

and h2. When h1 = h2, the force is only attractive, and the maximum is reached when
x0 = 0. When h1 6= h2, the maximum is reached at a finite x0 > 0. The force then
decreases with a decrease of x0. At x0 = 0, the force is attractive when h1 and h2

are close to each other, but the attraction decreases and may become repulsive with
increasing difference between h1 and h2, as demonstrated in figure 9. The nature of
the interaction force is similar when hi, h0 < 0.

Bounds on hi

From (4.10), we have

h2
i − h2

0 = 2(1− sin θi).

Since 2 > 1 − sin θi > 0, hence 4 > h2
i − h2

0 > 0. Thus, h2
i > h2

0 > h2
i − 4 for i = 1, 2.

For example, if h2 > h1 then the domain of h2
0 is in (h2

2 − 4, h2
1).

4.4. Mutually exclusive families of menisci

Proposition. The two families of menisci, one with θ′ = 0 and the other with a point
A where the tangent is horizontal and the liquid is below A are mutually exclusive.
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Proof. For the latter family, 0 < |h0| < |h| at any point on the meniscus where h0

is the height of the meniscus at A and h is the height at any point of the meniscus.
Also, h0 and h have the same sign. Thus, A is the lowest or the highest point of the
meniscus. Then, by (4.7), where y and h0 have opposite signs, θ′ 6= 0 at any point on
the meniscus. For the former family, let θ′ = 0 at B on the meniscus. Then, h(B) = 0
and θ(B) 6= 1

2
π. At any point of the meniscus below the far-field liquid surface, θ′ < 0

and above the far-field liquid surface, θ′ > 0 (equation (4.1)). Thus, if there exists a
point, A′, on the meniscus where the tangent is horizontal, then the liquid is above A′
(see e.g. figure 10). Thus, the two families are mutually exclusive.

4.5. Formation of clusters by floating plates: is there a critical size for sinking?

Solids, floating on liquids, are known to agglomerate owing to interaction forces
between them. The shape and size of a cluster formed by floating plates depend on
the size and shape of the plates and their initial states. The weight of the cluster is
the sum of the weights of the individual plates, but the perimeter of the cluster is less
than the sum of the perimeters. Thus, it appears at first look that, as agglomeration
proceeds, the cluster should soon reach a critical size above which it should sink.
The critical size should roughly be the maximum size of an equivalent single plate of
similar shape that can float by buoyancy and capillarity. However, let us consider an
alternative scenario. It is known (Mansfield et al. 1997) that as the plates agglomerate,
they also tilt. Thus, in a cluster, the plates surrounded by other plates lower their
elevation, while the outer plates gradually increase their elevation by tilting. The
inner plates are supported primarily by buoyancy, the outer plates by buoyancy and
capillarity. Thus, with agglomeration, the total hydrostatic force increases not as a
function of area, but at a rate faster than the rate of increase of area. This raises the
question, does there exist a critical size for sinking for a cluster, i.e. can individual
units floating by buoyancy and capillarity form a cluster with unbounded size? The
difference between a cluster and an individual critical-sized plate is that the plate
has high rigidity against bending that prevents it from forming a boat to increase
the buoyancy, whereas for the cluster, the absence of moment rigidity at the junction
between the plates may allow the cluster to take the required shape for floatation.
The topic will be treated in detail in a future publication.

4.6. Desktop experiments

Attraction between small floating bodies can be verified from everyday experience such
as the attraction between tea particles, ground pepper or small pieces of aluminium
foil strewn on water surface. To demonstrate the repulsion at all distances, we
must create opposite menisci between the two solids. One simple way to create the
opposite menisci is by two microscope slides, one held vertically on water but partially
submerged. Glass, being hydrophilic, forms a regular meniscus with water. The other
slide is allowed to float on water which forms a reverse meniscus, since glass is heavier
than water. When brought close to each other, the plates repel. As another example,
we take two small pieces of aluminium foil and make two small circular boats (using
for example the cap of a pen as a mould to shape the boats). A small hole is pierced
at the bottom of one of the boats by a pen tip. The boats are allowed to float on
water, the one with the hole upside down, the other on its bottom. The former forms a
reverse meniscus, the latter a regular meniscus, since aluminium is hydrophilic. When
they are brought close together they repel each other.

The existence of a stable equilibrium point can be verified by floating two plates
such as microscope slides, one heavier (or larger) than the other. The unequal weights
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give rise to variations in h1 and h2. If the variation is large enough, the plates approach
each other to the equilibrium configuration at a finite horizontal distance between
them. If the plates are pushed towards each other, they repel each other.

The possibility of the formation of a large cluster can be tested as follows. A regular
microscope slide can barely float on water by capillarity and buoyancy. Thus, its size
might be close to the critical size. We cut several slides with a diamond cutter, each
into three squares, and let many squares float on water. They attract each other and
form a cluster of nine squares with a little care (without requiring the water surface
to be standing still). Here, the perimeter increased by 50% compared to one slide,
but the weight increased by 300%. The inner square remains horizontal, whereas the
outer ones are tilted forming a square boat.

In the following, we evaluate the energy associated with the meniscus formed by a
single or two interacting plates.

5. Energetics
The energy is contributed by the surface energies of the solid–liquid and liquid–

vapour interfaces, and the energy due to the hydrostatic head. We are interested in
the part of the energy that varies with the height of the triple line, as well as the gap
between the solids. If the plate is thin and the meniscus is formed at the edges of
the plate, then the solid–vapour and solid–liquid interface areas change only at the
edges as the plate is moved in or out of the liquid surface, or as the plates are moved
horizontally with respect to each other. The corresponding change in energy owing
to the change of interfacial area at the edges is negligible compared to the change
in the hydrostatic or the liquid–vapour interface energies. We will thus evaluate the
hydrostatic energy, EH , and the surface energy, ES , contributed by the liquid–vapour
interface only. Furthermore, the change in energy from the reference configuration
where the meniscus height is zero is of interest. Thus, in what follows, EH and ES
indicate the changes in energies per unit length of the plates from the reference
configurations. If the plates are bent (e.g. figure 4) or thick, then the change in the
solid–liquid interface energy may not be negligible depending on the geometry and
shape of the edges of the plates, and can be evaluated from the specific geometry.
Here, for simplicity, we assume that such a change in the interfacial energy for the
bent plates considered later is small compared to ES and EH , and hence the analysis,
when applied to the bent plates, is restricted to geometries where the solid–liquid
interface energy change is small. The bent plates are introduced only to illustrate a
bifurcation phenomenon in menisci.

5.1. Energy for the meniscus formed by a single plate

Surface energy of the meniscus

Consider a small element of the meniscus (liquid–vapour interface) of length dS
at an angle θ with the vertical (figure 2c). Its horizontal projection is dX = dS sin θ.
Then the liquid–vapour interface energy of the element before and after formation
of the meniscus is γdX and γdS , respectively. The elementary change in energy,
dES = γ(dS − dX) = γl0(1− dx/ds)(dθ/θ′), and

ES

E0

= 2

∫ π/2

θ0

(1− sin θ)
dθ

θ′
= 2

∫ 0

π/4−θ0/2

−2 sin β dβ = 4(1− cos β0), (5.1)

where β = 1
4
π− 1

2
θ, β0 = 1

4
π− 1

2
θ0, E0 = l0γ, the factor 2 outside the integral accounts

for the two menisci on either side of the plate, and θ′ is defined by (3.6).
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Hydrostatic energy of the meniscus

It is contributed by the liquid column under the plate and the column of the liquid
under the liquid–vapour interface. The former gives an energy EH1 = ρgH2

0W =
ρgl30h

2
0w = E0h

2
0w where H0 is the height of the column under the solids surface,

2W is the width of the plate, w = W/l0 and h0 = H0/l0. The contribution of the
liquid column under the liquid–vapour interface can be evaluated by considering a
small segment of the interface dS with column height H(S). The energy due to the
elementary column is dEH2 = 1

2
ρgH(S)2dX, where dX is the horizontal projection

of dS (figure 2c). From (3.3), γ(dθ/dS ) = ρgH(S) giving H(S) = l20(dθ/dS ) =
l20(dθ/l0ds) = l0θ

′. Thus,

EH2 = 2ρg

∫ ∞
0

1
2
H2 dX = ρg

∫ π/2

θ0

l30θ
′ sin θdθ = 2E0[− 2

3
+ cos β0 − 1

3
cos(3β0)], (5.2)

where the upper limit θ = 1
2
π is arrived at as s → ∞. Note that EH2 accounts for

the hydrostatic energy of the meniscus on both sides of the plate. The total energy,
E = ES + EH1 + EH2, normalized by E0, is given by

E

E0

= 8
3

+ wh2
0 − 2 cos β0 − 2

3
cos(3β0). (5.3)

Note that E = 0 when θ0 = 1
2
π and H0 = 0, i.e. when the meniscus is horizontal. Since

H0 = 2l0 sin β0 (equation (3.5)), energy of the meniscus can also be expressed in terms
of H0 or h0 = H0/l0:

E

E0

= 8
3

+ wh2
0 −

√
1− 1

4
h2

0(
8
3
− 2

3
h2

0), (5.4)

which, for small h0, has a quadratic form:

E

E0

= (1 + w)h2
0, (5.5)

i.e. capillarity and buoyancy together behave as a ‘linear spring’ with a spring constant
2γ(1 +w)/l0 (unit: force/unit length of the plate/unit displacement) against displace-
ment l0h0. Note that here the plate thickness t is small and t/l0 � h0 � 1. A typical
plate thickness in micro mechanical systems is on the order of 1–5 µm (say 0.002 mm).
If the meniscus is between water and air, then l0 = 2.72 mm and t/l0 = 0.0007.

5.2. Energy barrier for sinking

The energy necessary to wet a thin flat plate already interfacing with a liquid with
its bottom surface is Ewet = 2W (γ + γsl − γs) per unit length of the plate. Then,
by (2.1), Ewet = 2E0w(1− cosφ). Now, the total energy, E, of the meniscus as the
height of the triple point changes from H0 = 0 is E = ES + EH1 + EH2, which can
be expressed as a function of θ0 or H0. When the plate is moved towards the
liquid, then θ0 >

1
2
π. At the impending collapse of the meniscus, θ0 = 1

2
π+ φ, and

EH1/E0 = wh2
0 = 2w(1− cosφ) = Ewet/E0 (equation (3.4)). Thus, the energy barrier

for sinking, Eb = E(θ0 = 1
2
π+ φ)− Ewet = ES + EH2 at θ0 = 1

2
π + φ. From (5.1) and

(5.2), Eb increases monotonically from zero with 0 6 φ 6 π. Thus, Eb is less for a
hydrophilic plate (φ < 1

2
π) than that for a hydrophobic plate (φ > 1

2
π).

5.3. Energy for the menisci formed by two plates

Here, the total energy, E, is contributed by the two outer menisci (designated by the
subscripts L and R for left- and right-hand sides) and the meniscus between the two
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plates, each meniscus contributing two components, the hydrostatic and the surface
tension parts. The procedure of evaluating them is essentially the same as described
for the single plate.

Two plates with a meniscus containing dθ/ds = 0

Let the surface and hydrostatic energies of the outer menisci be ESj and EHj , j =
L, R, respectively. Then, ESj and EHj are given by (5.1) and (5.2) where βj = 1

4
π− 1

2
θj

replaces β0. θL and θR are shown in figure 6(a) and can be obtained from (3.5) for
given hj where θ0 is replaced by θj . The surface energy, ES12, for the meniscus L1L2

is given by

ES12

E0

=

∫ θ1

θ0

(1− sin θ)
dθ

θ′
+

∫ θ2

θ0

(1− sin θ)
dθ

θ′
, (5.6)

where θ′ is defined in (4.2). For given heights of L1 and L2, and the distance x0

between the plates, θ0, θ1 and θ2 are obtained by the procedure outlined in § 4.1.
Following § 5.1, the total hydrostatic energy, EH , can be obtained from

EH = E0(w1h
2
1 + w2h

2
2) + EHL + EHR + EH12, (5.7)

where 2wi, i = 1, 2 is the non-dimensional width of the plates, EHj , j = L, R, can be
obtained from (5.2) where β0 is replaced by βj , and

EH12

E0

=
1

2

2∑
i=1

∫ θi

θ0

θ′ sin θdθ.

The total energy is then given by

E = ESL + ESR + ES12 + EH. (5.8)

Two plates with a meniscus containing θ 6= 1
2
π

Here, the total energy is defined as in (5.8), where ESL and ESR are given by (5.1)
with βj , j = L, R replacing β0 (figure 6b), EHj is given by (5.2), and

ES12

E0

=

∫ θ2

θ1

(1− sin θ)
dθ

θ′
,

EH12

E0

=
1

2

∫ θ2

θ1

θ′ sin θdθ, (5.9)

where θ′ of (5.9) is given by (4.8). Figure 9(e) shows the total energy of the menisci
formed by the two plates of figure 9 as a function of the gap, x0, between the plates.
Here, w1 = w2 = 1 is used for the plates, the energy is normalized by E0 and the
distances by l0. A numerical derivative of E/E0 with respect to x0 is carried out using
a linear interpolation between the energy values. The derivative coincides with the
force displacement relation (figure 9d ).

6. Bifurcation solutions for the meniscus between two solids
It was shown in § 3.3 that for a prescribed height, there are at most two possible

menisci between the edge of a single plate and a liquid. Thus, for the meniscus between
two plates (two edges are involved) there are at most four possible menisci for given
prescribed heights of the triple points. However, the four solutions will result in four
different horizontal gaps, x0, between the plates.

Figures 10(a)–10(d ) show the four possible menisci formed between two solids, S1

with h1 = 1.5 and S2 with h2 = −1. The angle of the menisci at L1 with the vertical,
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Figure 10. Four computed menisci (§ 4.1), A1–A4, between two curved plates, S1 and S2, for given
normalized heights h1 = 1.5 and h2 = −1.0 of the triple points are shown. The plates are curved such
that, at the triple (solid–liquid–vapour) points, the angle of the menisci with the vertical can take
appropriate values necessary to form four different menisci, and yet satisfy the fixed contact angle
with the solid. The outer menisci are computed by the procedure outlined in § 3.4. The interaction
force between S1 and S2 (in (e)) is repulsive at all non-dimensional distance, x0, between the triple
points. There are four solutions for the force originating from two bifurcation points B1 and B2.
The points A1–A4 correspond to the menisci shown in (a)–(d ). The energy (hydrostatic and surface)
as a function of x0 is shown in ( f ). A numerical derivative of the lowest energy with respect to x0

coincides with the corresponding force–distance curve of (e) as expected.

θ1, is close to − 1
2
π (in figure 10(a), θ1 > − 1

2
π, in 10(b), θ1 < − 1

2
π). Thus, the menisci

are close to the bifurcation point θ1 = − 1
2
π. Note that the solids are curved at the

edges so that they allow θ1 and θ2 to take required values to sustain the menisciL1L2

that maintain the fixed contact angle φ between the solid and the liquid. Figure 10(e)
shows the four bifurcation branches of the solution for the repulsive interaction force
between the two solids as a function of the horizontal gap, x0 (non-dimensional),
between L1 and L2. The equal interaction force for the menisci A1 − A4 are shown
by the ordinate of the line A1A4 in figure 10(e). Each pair of menisci, such as A1

and A2, originate from a bifurcation point such as B1 where θ1 = − 1
2
π. The pair, A3

and A4, originate from B2 where θ2 = − 1
2
π. Figure 10( f ) shows the energy associated

with the four possible menisci as a function of x0. In calculating the hydrostatic part
of the energy, the width of each of the plates in non-dimensional units is taken as
2w = 2. The energies corresponding to the four menisci A1–A4 are represented by
the filled circles A1–A4 in figure 10( f ). The lowest energy curve is differentiated with
respect to x0 numerically and the result is plotted on the force diagram. It matches
the corresponding force curve as expected.
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Figure 11. (a–d ) Four possible menisci between two plates S1 and S2 with non-dimensional heights
1 and 2. The interaction force is identical for these four menisci. The plates are curved such that
at the triple (solid–liquid–vapour) point the angle of the meniscus with the vertical can take the
appropriate values resulting in four different menisci, and yet the meniscus can satisfy the fixed
contact angle with the solid. The interaction force between S1 and S2 as a function of x0 is shown
in (e) where the points B1–B4 correspond to the menisci B1–B4 of (a)–(d ). The four solutions B1–B4

originate from two bifurcation points P1 and P2. The meniscus, L1L2, between the solids at P1 is
also shown. The energy (hydrostatic and surface) as a function of x0 is shown in ( f ). A numerical
derivative of the lowest energy with respect to x0 coincides with the corresponding force–distance
curve as expected.

Figures 11(a)–11(d ) show the four possible menisci between two solids S1 and S2

with h1 = 1 and h2 = 2, respectively. Note that h = 2 is the maximum allowable
height (see (3.5) and the following paragraph) of the meniscus mR on the right-hand
side of S2 with an angle θR = − 1

2
π at the triple point LR . Figure 11(e) shows the

interaction force, Fx/γ, which is attractive for all x0. The force corresponding to the
four menisci, B1–B4, are shown by filled circles B1–B4 in figure 11(e). The solutions B1

and B3 are two bifurcation branches originating from P1 where the meniscus becomes
closed. For x0 < x0P1

, where x0P1
is the distance between L1 and L2 at state P1, the

meniscus of type B3 becomes non-physical, since it intersects with itself and continues
beyond the point of intersection. Hence, only the meniscus of type B1 is retained.
The solutions B2 and B4 originate from P2, and at x0 < x0P2

the meniscus of type B4

becomes non-physical, and the solution of type B2 is retained. The interaction force
reaches equal maximum at A1 and A2. Here, θ1 = 1

2
π and hence the capillary force

on S1 acts towards the right, and reaches its maximum value γ(sin( 1
2
π)− sin θL). For

the solid S2, the tangent to the meniscus at L2 deviates most from θ2 = 1
2
π, and the

force towards the left maximizes with the value γ(sin( 1
2
π) − sin θ2), and is equal to

the force on S1 towards the right. The menisci A1 and A2 originate from A0 where the
interaction force vanishes, and x0 < 0. Here, θ2 = 1

2
π, and hence the capillary force

on both edges of S2 cancel each other. Note that, θ2 = 1
2
π is also the required initial

angle for a single meniscus with h = 2. The angle of this meniscus with the vertical
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when it reaches a height h = 1 must be the same as the initial angle for a single
meniscus with h = 1, such as that formed by S1 on its left-hand side with an angle
θL satisfying (3.5) for h = 1. However, π − θL also satisfies (3.5) which is the value
taken by θ1 at L1, i.e. θ1 = π− θL. At A0, θ1 = π− θL and hence the net horizontal
force on S1 is γ(sin θL − sin(π − θL)) = 0. No solution for the meniscus exists for
x0 < x0A0

. The energy variations for the menisci as a function of x0 are shown in
figure 11( f ) where w = 1 is chosen for both the solids. Here, B1–B4 correspond to
the menisci B1–B4 in figure 11(a)–11(d ). The points P1 and P2 in the force diagram
become jumps in the energy diagram owing to the higher energy associated with the
loop in the meniscus of types B3 and B4. The lowest energy curve (non-dimensional)
is differentiated with respect to x0 numerically using a linear interpolation between
adjacent energy values, and the derivative is plotted on the force diagram. As expected,
the derivative coincides with the corresponding force–distance curve.

7. Conclusions
The study is motivated by the recent micro fluidic applications where thin plates

may form menisci with a liquid and mutually interact with one another. In order
to determine the meniscus, we assume that the solid–liquid contact angle and the
interfacial energies are fixed. Thus, as a plate forming a meniscus is moved in or
out of the liquid, the meniscus is allowed to take its necessary profile by changing
its initial angle and yet maintain the fixed contact angle at the edge of the plate.
Hence, the range of menisci that can be formed as the plate is moved depends on the
geometry of the edge, e.g. the range is larger for a circular edge than a semicircular
one. The profile of the meniscus is solved for a one-dimensional case, i.e. for a long
plate using the Young–Laplace equation. The height of the triple point, and hence of
the plate if it is thin, from the far-field liquid surface is prescribed.

The study is then extended to investigate the interaction between two long plates
forming menisci with shallow to steep slopes using the Young–Laplace equation
without linearization. Here, the heights of the triple points, and hence of the plates
if they are thin, are prescribed, in contrast to earlier interaction studies where the
long solids are floating and their heights are determined by their weights. It is found
that (i) the interaction force is attractive for two identical menisci, (ii) the interaction
force is repulsive for opposite menisci, e.g. one plate is raised and the other plate
is depressed below the liquid surface, (iii) for similar menisci but not identical, e.g.
one plate is raised more than the other, the force is attractive at long distances, and
depending on the menisci heights, the force may be repulsive at short distances with
a stable equilibrium in between, (iv) for given heights of the menisci, there can be at
most four possible profiles of the meniscus between the plates. The interaction force
between two plates is completely determined by the menisci they form. Hydrophilicity
or hydrophobicity are parameters that play a role in defining the geometry of the
meniscus through the contact angle φ, but other parameters such as heights of plates
and the geometry of their edges also play a role. Thus, there may be attraction
between two hydrophobic plates or two hydrophilic plates, or between a hydrophobic
and a hydrophilic plate depending on the menisci they form.

Two universal bounds are established for menisci in a space non-dimensionalized by
the capillary length l0. They are applicable to thick or thin solids, as long as the solids
form one-dimensional menisci with the liquid, i.e. one of the principal curvatures of
the menisci vanishes. The bounds are: for a meniscus between two solids at a finite
distance apart, (i) if there is a point on the meniscus where the curvature vanishes
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(and hence the height vanishes) then the absolute heights of the triple points can be
at most 2, but (ii) if there is a point P on the meniscus where the tangent is horizontal
with liquid below, and where the height is h0, then |h0| > 0, the heights h1 and h2 of
the triple points are of same sign as that of h0, and 4 > h2

i − h2
0 > 0, i = 1, 2. The two

families of menisci, (i) and (ii), are mutually exclusive. Also, the height of a meniscus
with a single solid can be at most 2 above or below the liquid surface.
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